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Abstract

The analysis and design of pipe networks is usually a very
complex task and depending of many factors. The paper here
presented explores issues related to the accuracy and
robustness of three iterative nonlinear methods used for
designing pipe networks: Hardy Cross method, Gradient
method and Newton-Raphson method. The last two methods
are implemented in EPANET and Matlab, through the fsolve
function. In order to evaluate the performance of each
numerical method, three pipe networks, were assessed. No
differences in the results were found by using fsolve (of
MatLab) and Hardy-Cross methods. However, the EPANET

results show differences up to 115% regarding other two
methods. This behavior can be explained by the magnitude
of head loss and the flow rate in some tubes of the network
with errors close to the errors set up and by the Nodal
Newton-Raphson method used at EPANET's code. The
Hardy Cross method proved to be robust on three evaluated
cases

Key words: nonlinear methods, pipe network; EPANET;
Hardy Cross method; Newton—Raphson technique.

Resumen

El proyecto y andlisis de redes de tuberias suele ser una
tarea muy compleja que depende de muchos factores. El
trabajo aqui presentado explora cuestiones relacionadas con
la precision y la robustez de tres métodos iterativos no
lineales utilizados para proyectar redes de tuberias: el
método Hardy Cross, el método de Gradiente y el método
Newton-Raphson. Los dos dltimos métodos se implementan
en EPANET y Matlab, a través de la funcion fsolve. Para
evaluar el desempefio de cada método numérico, se
evaluaron tres redes de tuberias. No se encontraron
diferencias en los resultados cuando la funcién fsolve (de
MatLab) y el método Hardy-Cross son utilizados. Sin

embargo, los resultados de EPANET muestran diferencias
de hasta un 115 % con respecto a los otros dos métodos.
Este comportamiento puede explicarse debido a la magnitud
de la pérdida de carga y del caudal en algunos tubos de la
red, con errores préximos al error establecido para la
convergencia y, también, por el método Nodal Newton-
Raphson utilizado en el cédigo de EPANET. El método de
Hardy Cross demostré ser robusto en tres casos evaluados.

Palabras clave: métodos no lineales; redes de tuberias;
EPANET; método Hardy Cross; técnica de Newton-Raphson.
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Introduction

Water distribution networks are designed and calculated for many purposes in addition to its main application:
water supplying for human consumption at adequate pressure and flow rate. Piped water is also used in many
others applications as washing, sanitation, irrigation and firefighting. The networks design should meet some
important criteria related to maximum demands [1]. It is noticed that the calculation of the water networks must
be done properly, being this the reason why some methods have been proposed in the literature.

Hardy Cross was the pioneer by proposing two methods for approaching the networking solution. Firstly, the
flows in the pipes in a network always satisfy the condition that the total flow into and out of each junction is zero,
and these flows are successively corrected to satisfy the condition of zero total change of head around each
circuit. Secondly, the total change of head around each circuit is always equals zero, and the flows in the pipes
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of the circuit are successively adjusted so that the total flow into and out of each junction finally approaches or
becomes zero [2].

An example of the successful application of the Hardy Cross Method was reported in [3] where it was carried
about an analysis of the water distribution at the community of Macundu in Rio de Janeiro State, Brazil. The
method was consistent and allowed the determination of fundamental parameters of the network, flow, and
pressure, to achieve the physical distribution of the water system for the community.

Although the Hard Cross method is widely accepted and used, it has some limitations. Convergence problems
are the main limitation that occurs due to a bad guess leading to a very slow convergence or divergence [4].
According to [5], an approach to get over this limitation is the solution of a network, via linear theory, in which the
continuity equations at nodes and energy conservation for each loop are solved simultaneously and the discharge
in each pipe is directly obtained. There is no need to guess initial discharges to satisfy the continuity equations at
nodes. Subsequent developments of this algorithm, which led to commercial software KYPIPE was due to the
implementation of the Newton-Raphson method [6].

Later, the Hardy Cross method was modified [7] and the results were compared with their previous work [8],
when the authors modified the Newton-Raphson technique and compared it also with other works of the literature
and with EPANET [7]. In conclusion, for complex networks, the modified Hardy Cross method was more efficient
than the traditional Newton-Raphson method and it takes less time between iterations than the original Hardy
Cross method. The results obtained matched well with the ones from EPANET.

The Newton-Raphson method can be also applied using a Trust Region Dogleg technique to supply some
convergence issues and turn it fast. It is applied using the function fsolve from Matlab which is specially designed
to solve nonlinear equations [9].

A new method to determine flows in pipe networks with rings was developed in [10]. This new method is
constituted by formulating a nonlinear system of algebraic equations that is solved through fsolve function. The
results obtained were very similar to those that can be found on literature, as well as the mass balance was
satisfied and the sum of the pressure drop in the pipes in any closed circuit was zero.

The fsolve can fail to convergence when trying to solve an equation, for example, that the user attempts to get
high accuracy by setting tolerances to very small values. The fsolve function might fail to converge for equations
with discontinuous gradients, such as absolute value [9].

The global gradient method [11] is a highly popular method, implemented in EPANET software. In this method,
energy equations are combined with the nodal equations and are simultaneously solved to estimate the nodal
heads and flow discharge. Here, like the methods of “simultaneous loop” and "linear theory", nonlinear energy
equations are linearized by using Taylor series expansion. However, they are solved using an optimal and reversal
scheme, which applies the inverse of the coefficients matrix [6].

Recently, [12] compared EPANET with the modified Hunter model in an analysis of the water distribution
network in buildings. At the end of his experiments, the authors showed that EPANET is very effective, noting a
percentage difference in the results from 0.24% to 1.06% between the software and the Hunter method.

Some published researches that show some EPANET issues leading to mistaken results [13, 14]. In [13], the
authors proposed a method for automatic functional testing in hydraulic simulators. The method is based on using
genetic algorithms to search for network parameter values in which the simulator under test computes solutions
that do not satisfy the governing network equations.

The testing program was first applied to a network, with 351 variable parameters, by using the EPANET
package. The incorrect solutions detected involved pipes with a head loss in order of 10-4 m and less; for such
pipes, the EPANET computed total heads at the pipe ends, the predominant case being a nonzero pipe flow at
equal total heads. These solutions are, in part, due to loss of significant digits since the computed data are
transferred from the EPANET simulator. They may also occur because in an EPANET solution, the flow through
a tube and the heads at its ends are not directly related by the head loss—flow relationship. Because of small flows
and/or low pipe resistances, a linear head loss—flow relationship has been used in the EPANET solver instead of
Hazen-Williams to avoid singular matrices.

Agreeing with [13, 14] stated that the EPANET software uses a demand-driven approach to simulate water
distribution systems. The EPANET solver uses the Cholesky decomposition to compute the solution of a system
of linear equations. However, under deficient pressure conditions the EPANET results are inaccurate. Therefore,
in these scenarios a pressure-driven model is required. Embedding a pressure-driven model in the EPANET
solver allows the computation of the available demand as a function of the current pressure and allows account
for leakage at pipe level. Nevertheless, these increasing modelling capabilities have a side effect: new terms for
the system coefficients matrix and the possibility of the matrix being positive indefinite. This requires a new
approach to reach convergence: a numerical factorization applicable to indefinite matrices and relaxation
coefficients to improve convergence [14].

The Hardy Cross method and EPANET were used to create a simple analysis procedure and design of a pipe
network [15]. The authors concluded that Hardy Cross's method places more emphasis on the effectiveness of
the pipe network design, being a simpler method, however it requires more interactions than EPANET.
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Taking into account previous discussion regarding advantages and limitations of the different methods used to
compute the main variables related to the design of pipes networks, in this paper a comparative analysis about
the accuracy and robustness of different methods in calculating three pipe networks is carried out. The three
methods are Hardy Cross method, EPANET software and the tool fsolve from Matlab.

Materials and Methods

Problem description

Some methods used to solve pipe networks have issues on their results accuracy because of the amount of
unknowns mainly when the number of unknowns is high, in other words, when the network has many tubes,
junctions, demands, rings, etc. [16, 2, 3]. Other sort of incorrect solution occurs when the head loss is 10-4 m or
less and when the flow and/or the resistance are low. In these cases, the EPANET, for example, changes the
head loss-flow relationship (Hazen—Williams, Darcy—Weisbach) for a linear one [13]. When the stop criterion is
too small, consequently, the method could not converge; or if the stop criteria is too high, it generates a wrong
result [6, 13].

Because of these limitations, the numerical methods analyzed in this work were assessed considering three
different cases in order of complexity, which means, an increase number of pipes, the addition of pumps as well
as demands and reservoirs, in order to compare the results accuracy among Hardy-Cross Method, EPANET and
Matlab’s tool, fsolve.

Case 01
It consists in 5 tubes, 1 demand and 2 reservoirs, which leads to 2 rings as shown in figure 1.

0,075 [m%s]

Fig. 1. First Case pipe network. Source: modified version of [16]

Water flows through the new galvanized iron tubes network. The material and roughness values used on the
simulation were taken as the recommended for commercial tubes [17]. The reservoir "A" is at an elevation of 15
m and reservoir "B" to a high of 2 m, according to the reference at node “D”. The demand of the system is 0,075
m3/s. All the relevant data for modeling the case are described on table 1 and table 2.

Table 1. Data Case 1. Source: modified version of [16]

Tube [ L[m] | D[m] | e[m] ZK
I | 500 | 03 |15x10*| 0

2 600 0,25 | 1,5x10~* 0
3 50 0,15 | 1,5x10~* 10
4 200 0,25 | 1,5x10~* 2
5 200 0,30 | 1,5x107* 2

Table 2. Data for node identify, node elevation and demands, Case 01.
Source: modified version of [16]

Node | Elevation [m] | Demand [m3/s]
A 15 0
B 2 0
C 4 0
D 0 0,075
E 1 0

Ingenieria Mecéanica. 2021;24(2):e625. ISSN 1815-5944 3



Guilherme da Silva Teixeira, et al. Evaluation of nonlinear Iterative methods on pipe network

Case 02

It consists in 14 pipes, 5 demands, 3 reservoirs, 4 valves and 1 pump, which forms 5 rings as can be seen in
figure 2.

Z 3
Res 1 0,11 [ms]
K=5 Keg
P A B c
3} L
i 12 B2
4]
9] (o] -
Reg 2
0,06 [mrs) «—(H) T Iy [14]
' < R hd 1131 ~
0,11 [mg]
(1] 11 (]
K=10 K=10
g () <] {E}—> 0,06 (m¥s]
7 0,06 [mes) 181

Fig. 2. Second Case pipe network. Source: Modified version from [18]

The pump can be described by the equation 1 where HP as Pump’s Head [m], and QP and Pump’s Flow [m?/s].
The water flows through a pipe network of new commercial steel tube, and the roughness is in accordance to the
recommended ones [17]. Data about pipe identifiers, pipe lengths, pipe diameters, absolute roughness, the
singular head loss, nodes identifiers, nodes highs and demands are shown on tables 3 and 4.

H, = —3.405 x 1077Q? + 166 1)

Where Q is the demand [m3/h] and H is the head [m]
Table 3. Data for Case 02. Source: Modified version from [18]

Tube [ L[m] | D[m] | e[m] Z K
1 1500 | 0,4 | 4,6x10°5 5
2 610 | 0,35 | 4,6x10°5 8
3 914 | 0,35 | 4,6x10°° 0
4 760 | 0,35 | 4,6x1075 0
5 610 | 0,35 | 4,6x107° 0
6 610 | 0,35 | 4,6x10~° | 10
7 61 0,15 | 4,6x1075 | 10
8 975 | 0,30 | 4,6x10°° 0
9 760 | 0,35 | 4,6x107° 0
10 610 | 0,35 | 4,6x107° 0
11 457 | 0,30 | 4,6x107° 0
12 914 | 0,35 | 4,6x10°5 0
13 610 | 0,35 | 4,6x10°° 0
14 30 0,20 | 4,6x107° 0

Table 4. Data nodes on Case 02. Source: Modified version from [18]

Node Elevation [m] | Demand[m3/s]
A 12 0
B 12 0
C 18 0,11
D 15 0,11
E 12 0,06
F 6 0,06

G (Res 3) 34 0
H 15 0,06

I 12 0

Res 1 3 0

Res 2 30 0
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Case 03
It consists of 28 pipes, 8 demands and 3 pumps forming 12 rings, as shown in figure 3.
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Fig. 3. Pipe network of Case 03. Source: authors

Water flows through a pipe network of pre-stressed reinforced concrete tubes. The absolute roughness,
according to [2], is 0,04mm. The reservoir "A" is at an elevation of 277 m and reservoir "G" is at an elevation of
330 m. Demand identifiers, demand values, pipe identifiers, pipe diameters, pipe length, node elevation and node
identifiers are described on table 05 to table 07. The pumps curves are represented by the equations (2) to (4),
where HB1, HB2 and HB3 as Pump’s Head [m] and Q as Pump’s Flow [m?3/s].

Hg, = —158.47Q2 + 55.31Q + 134.20 )
Hp, = —143.65Q2 — 54.78Q + 90.89 (3)
Hgs = —953.86Q2 + 179.73Q + 47.33 (4)

Table 5. Demand data for Case 03. Source: authors

Demand Points | Demand [m?3/s]
Q1 0,0388
Q2 0,0333
Q3 0,0444
Q4 0,0250
Q5 0,0388
Q6 0,0333
Q7 0,0333
Q8 0,0250
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Table 6. Pipe data for case 3. Source: authors

Tube | D[m] | L[m] | Tube | D[m] | L [m]
0,305 | 457 15 0,152 | 335
0,203 | 305 16 0,152 | 366
0,254 | 366 17 | 0,254 | 548
0,254 | 610 18 | 0,152 | 548
0,203 | 853 19 0,152 | 396
0,203 | 335 20 0,203 | 305
0,203 | 305 21 0,203 | 366
0,203 | 762 22 | 0,203 | 335
0,203 | 247 23 | 0,203 | 335
10 0,152 | 396 24 0,152 | 548
11 0,152 | 305 25 0,305 | 457
12 0,152 | 335 26 0,508 | 152
13 | 0,152 | 305 27 10,508 | 152
14 | 0,152 | 548 28 | 0,305 | 762

OIO|IN|O|O|AR|W|IN|F-

Table 7. Node data for case 3. Source: authors

Node | Elevation [m] | Node | Elevation [m]

A 227 J 309
B 301 K 300
Cc 311 L 308
D 316 M 312

E 322 N 319

F 330 (0] 330
G 330 P 335

H 320 Q 327

I 314 R 338

Results and Discussion

Evaluation of the methods for the previously described cases.
Case 01

The converged flow values for each method assessed are described on table 8, where it can be seen that no
significant differences were found.

Table 8. Converged flow (Q) values [m3/s] and head loss (W) [m], Case 0. Source: authors

HC EPANET MATLAB
Q W Q W Q w
0,1376 | 5,6249 | 0,1371 | 5,6400 | 0,1376 | 5,6218
0,0626 | 3,6984 | 0,0621 | 3,6840 | 0,0626 | 3,6938
0,0366 | 3,6765 | 0,0365 | 3,9745 | 0,0366 | 3,6801
0,1011 | 3,5712 | 0,1006 | 3,5720 | 0,1011 | 3,5742
0,0261 | 0,1054 | 0,0256 | 0,1040 | 0,0261 | 0,1057

Tube

G| W|IN|F

In this case, the execution time for all the methods was less than one second, which was considered a fast
simulation. Even though the Hardy Cross took 3 times the number of iteration of the Matlab, possibly, because
the trust region dogleg technique used by fsolve allows the method to avoid local maximums and minimums
accelerating the method convergence.

Case 02

The flow results for each method considered here are described on table 9. The deviation among the methods
is no greater than 0.5%. It is noticeable that the accuracy, for this case, may be considered as very good
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The execution time was also less than a second.

Table 9. Converged flow (Q) values [m3/s] and head loss (W) [m], Case 02. Source: authors

Tube HC EPANET MATLAB

Q W Q w Q w
1 0,624 | 67,4845 | 0,623 | 61,7550 | 0,624 | 67,4811
2 0,327 | 18,6270 | 0,327 | 14,0971 | 0,327 | 18,6213
3 0,189 | 7,2527 | 0,189 | 7,3577 | 0,189 | 7,2521
4 0,079 | 1,1546 | 0,079 | 1,1704 | 0,079 | 1,1545
5 0,049 | 5,7452 | 0,049 | 0,3843 | 0,049 | 5,7467
6 0,109 | 0,3836 | 0,109 | 1,7263 | 0,109 | 0,3832
7 0,055 | 8,1852 | 0,055 | 3,2739 | 0,055 | 8,1735
8 0,055 | 1,6210 | 0,055 | 1,6283 | 0,055 | 1,6188
9 0,297 | 14,4738 | 0,297 | 14,6148 | 0,297 | 14,4784
10 0,138 | 2,6614 | 0,138 | 2,7084 | 0,138 | 2,6630
11 0,114 | 3,0028 | 0,114 | 3,0528 | 0,114 | 3,0033
12 0,183 | 6,8039 | 0,182 | 6,8824 | 0,182 | 6,8033
13 0,206 | 5,7452 | 0,206 | 5,8194 | 0,206 | 5,7467
14 0,224 | 5,7110 | 0,223 | 5,7297 | 0,224 | 5,7107

of iteration of the Matlab.
Case 03

The converged flow values, for each method evaluated, are described on table 10. The Hardy Cross and Matlab
results are in a close agreement with deviations lower than 0.5%. However, there is a clear discrepancy on the
EPANET results compared with the other two methods. Differences ranging from 0.1% up to 115% were found.
These huge differences are possible due to the same reasons that were described before for Case 01, which
means stop criteria on the same order of the flow on the tube, for small number of tubes, while the overall system
has converged.

Table 10. Converged flow (Q) values [m3/s] and head loss (W) [m], Case 03. Source: authors

As in the Case 01, the Hardy Cross took 3 times the number

Tube HC EPANET MATLAB Tube HC EPANET MATLAB
Q W Q w Q w Q w Q W Q W
1 |0,0790|1,3660 | 0,0599 | 0,8272 | 0,0789 |1,3656 | 15 |0,0333|6,3175 |0,0312 | 5,6582 | 0,0333 | 6,3165
2 |0,0456 | 2,4526 | 0,0287 | 1,0431 | 0,0456 |2,4518| 16 |0,0235|5,3517 | 0,0228 |5,1128 | 0,0235 | 5,3513
3 |0,0213|0,2383 | 0,0382 | 0,7064 | 0,0213 |0,2384| 17 |0,0669 |1,9884 |0,0668 | 2,0167 | 0,0669 | 1,9881
4 |0,0523|2,0870|0,0665 | 3,3306 | 0,0523 |2,0867| 18 |0,0026 |0,0958 | 0,0032 |0,1425 | 0,0026 | 0,0962
5 10,0232 |1,9336 |0,0289 | 2,9684 | 0,0232 |1,9327| 19 |0,0023|0,0577 |0,0050 |0,2257 | 0,0023 | 0,0579
6 |0,0794|7,7318 | 0,0812 | 8,2008 | 0,0794 |7,7319| 20 |0,1003 |11,0158| 0,0984 |10,7787|0,1003 |11,0186
7 10,1030 |11,5951|0,1040 [11,9926| 0,1030 |11,5649| 21 |0,0808 |8,7304 |0,0794 |8,5717 | 0,0808 | 8,7304
8 |0,0708 |14,1154| 0,0676 [13,1369| 0,0708 [14,1150| 22 |0,0075 |0,9081 |0,0065 |0,0771 | 0,0075 | 0,0982
9 [0,0986 | 8,6383 | 0,0931 | 7,8571 | 0,0986 |8,6368| 23 |0,0409 |2,1900 | 0,0399 |2,1273 | 0,0409 | 2,1900
10 |0,0111|0,9548 | 0,0134 [ 1,3702 | 0,0111 |0,9546 | 24 |0,0149 |2,2881 |0,0145 | 2,2084 | 0,0149 | 2,2882
11 |0,0184 | 1,8765 | 0,0217 | 2,5986 | 0,0184 |1,8766| 25 |0,2144|9,1229 |0,2111 |5,9963 | 0,2144 | 9,1227
12 [0,0194 | 2,2844 | 0,0221 | 2,9480 | 0,0194 |2,2844| 26 |0,1776|0,1665 |0,1530 |0,1277 | 0,1775 | 0,1665
13 |0,0192 | 2,0294 | 0,0238 | 3,1080 | 0,0192 |2,0289 | 27 |0,0947 | 0,0519 |0,1193 | 0,0806 | 0,0947 | 0,0519
14 |0,0406 |15,0702| 0,0395 |14,5056| 0,0406 |15,0696| 28 |0,0838 |2,5493 | 0,0805 |2,4003 | 0,0839 | 2,5500

From the results obtained in cases 01 and 03, it is possible to note that the results with EPANET did not always
match with the other two methods here studied. For better insight of the EPANET behavior, on [13] was developed
a genetic algorithm that was able to identify and account the errors in a hydraulic simulator. The authors evaluated
the EPANET, where it was found many incorrect values mainly when the head loss in pipes was 10-4 m or less.
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For low flow values and/or resistance in tubes, a linear relationship was used instead of the equations of Hazen-
Williams, or Darcy-Weisbach, resulting in incorrect results.

In [2] it was compared the Distributed Engineering Workstation (DEW) and EPANET models for a case
consisting of 58 tubes and 2 reservoirs were evaluated. In this analysis, DEW showed different results compared
to EPANET. It happened because both simulators were triggered with their default accuracy, 1x10-3. Then DEW'’s
accuracy was increased to 1x10-4 and 1x10-6, through this was possible to convergence both models at the
same answers and to was possible to conclude that DEW does not have a strict stopping criterion for
convergence.

Regarding the accuracy of the standard stop criteria of EPANET in [13] it was, carried out three other tests
where errors occurred in the solutions. These incorrect solutions occur in situations where the default accuracy
of EPANET heads tolerance was inadequate. Then the authors carried out the accuracy correction and obtained
the improvement in their results. In the present study, the EPANET’s standard precision is 1x10-3. For the Hardy
Cross and fsolve methods, the accuracy has been increased from 1x10-3 to 1x10-6. When the results were
compared, no change was noticed. Then the accuracy of EPANET was increased to 1x10-6 without changes in
the reported results.

As the results of [13] were different for the flow conditions of this work, the main point about EPANET's mistaken
results is on its method to solve the mass balance equation. According to [19] the method chosen to obtain flow
and head loss values was the Hybrid Method, also known as Gradient Method, [11]. As it is a hybrid method, the
authors used two techniques to solve the basic hydrodynamics equations. For the nonlinear part of equation, the
Nodal Newton-Raphson was used in [20] and for the linear part by mean of the Modified Conjugate/Incomplete
Choleski Factorization algorithm [11], thus solving both mass balance equation and energy at same time.

The number of equation is large [20], especially when network has lots of elements and components. This
situation may lead to a high degree of freedom that may reach to a result that validate the mass balance and,
consequently, the converge will occur, although, physically does not correspond in a correct way solution.
Reinforcing this idea, [18] stated that the nodal formulation of Newton’s method exhibits a relatively slow
convergence rate and it is highly sensitive to the starting values, and is unable to handle low resistance lines
(mainly short lengths of large diameter tubes). Complementing, was presented in [6] another disadvantage of the
method that is the lack of optimal convergence in large scale networks. To eliminate this problem, some pipes of
the network should be temporarily removed in the analysis procedure. Another disadvantage is the high
oscillations to achieve optimal convergence. To decrease the oscillations, the value of the variation of heads at
the nodes is reduced by half though this will increase the number of iterations.

In this case, the execution time was close to one second, but due to the higher complexity of this case when
compared with the other cases, the Hardy Cross method took 12 times the number of iterations needed to
converge if compared to the Matlab code. It occurs due to the Trust Region Dogleg Technique behind fsolve.

Evaluation of the influence from the initial guesses

The analysis of the initial guesses influence was carried out only for Case 03 as it is considered the most
complex case. The analysis consists in defining three different conditions to select the unknowns for the initial
guess: the first one was to consider that 50% of the average demand was set. It means that the demands on the
first initial guess were 50% lower than the average demand previously obtained in the simulation for this case.
The second criterion was for 100% (average demand) and the third one was for 150% of this reference value. For
each condition, a mass balance was checked. As the network has twenty-eight pipes and sixteen nodes, there
are sixteen continuity equations with twelve flow unknowns for being specified to check the mass flow balance.
These unknowns were selected firstly by the tubes with the highest head loss, then those with smaller head loss
and finally by completely random selection. This selection was based on the previous results of the third case and
for all of them the mass balance was satisfied.

In addition, another goal apart from examine the robustness of the Hardy Cross method, was also to test if the
tubes with the largest head loss would converge to the smallest number of iterations. This hypothesis is because
the tubes that have the biggest head losses are the ones that have the major influence at the system convergence.

The tests of the initial guess were carried out only for the Hardy Cross method because Matlab’s function,
fsolve, as previously discussed, has no influence of the initial guess and the EPANET has no option for the user
to set it. The “Base” values are described on table 11 with the final flows from the tests of the initial guesses. The
“Base” values were taken from the converged result of Case 03 and the 12 imposed values on the three conditions
are highlighted at table 11.
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Table 11. Test results for the tubes that the head losses were great, small, and the
random selection. Source: authors

Small Head Losses High Head Losses Random
Tube| Demands Average Demands Average Demands Average |Base
150% |100%| 50% | 150% |100%| 50% | 150% |100% | 50%
1 0,079 (0,079| 0,079 | 0,079 |0,079| 0,079 | 0,079 |0,079| 0,079 |0,079
2 0,046 |0,046| 0,046 | 0,046 |0,046| 0,046 | -0,046 |-0,046| -0,046 |0,046
3 0,021 (0,021 0,021 | -0,021 |-0,021| -0,021 | 0,021 |0,021| 0,021 |0,021
4 -0,052 |-0,052| 0,052 | 0,052 |0,052| 0,052 | 0,052 |0,052| 0,052 |0,052
5 0,023 |0,023| 0,023 | -0,023 |-0,023| -0,023 | -0,023 |-0,023| -0,023 | 0,023
6 -0,079 |-0,079| 0,079 | -0,079 |-0,079| -0,079 | -0,079 |-0,079| -0,079 |-0,079
7 0,103 |0,103| 0,103 | 0,103 |0,103| 0,103 | 0,103 |0,103| 0,103 [0,103
8 0,071 (0,071 0,071 | 0,072 |0O,072| 0,072 | 0,071 |0,071| 0,071 |0,071
9 0,099 (0,099 0,099 | 0,099 |0,099| 0,099 | 0,099 |0,099| 0,099 |0,099
10 | 0,011 (0,011| 0,011 | 0,011 |0O,012| 0,012 | 0,012 |0,012| 0,011 |0O,011
11 | -0,018 |-0,018| -0,018 | 0,018 |0,018| 0,018 | -0,018 |-0,018| -0,018 |-0,018
12 | 0,019 |0,019| -0,019 | 0,019 |0,019| 0,019 | -0,019 {-0,019| -0,019 |0,019
13 0,019 (0,019| -0,019 | 0,019 |0,019| 0,019 | 0,019 |0,019| 0,019 |0,019
14 | -0,041 |-0,041| -0,041 | 0,041 |0,041| 0,041 | -0,041 {-0,041| -0,041 | 0,041
15 0,033 (0,033| 0,033 | 0,033 |0,033| 0,033 | 0,033 |0,033| 0,033 |0,033
16 0,024 |0,024| -0,024 | 0,024 |0,024| 0,024 | 0,024 |0,024| 0,024 |0,024
17 | 0,067 |0,067| 0,067 | 0,067 |0,067| 0,067 | 0,067 {0,067 | 0,067 |0,067
18 | 0,003 |0,003| -0,003 | -0,003 |-0,003| -0,003 | -0,003 |-0,003| -0,003 |-0,003
19 | 0,002 |0,002| 0,002 | -0,002 |-0,002| -0,002 | 0,002 |[0,002| 0,002 |-0,002
20 | 0,100 |0,100| 0,100 | 0,100 |0,100| 0,100 | 0,100 |0,100| 0,100 |0,100
21 | -0,081 |-0,081| -0,081 | 0,081 |0,081| 0,081 | -0,081 |-0,081| -0,081 |0,081
22 | -0,008 |-0,008| -0,008 | 0,008 |0,008| 0,008 | -0,008 |-0,008| -0,008 |-0,008
23 | -0,041 |-0,041| -0,041 | 0,041 |0,041| 0,041 | -0,041 |-0,041| -0,041 | 0,041
24 | -0,015 |-0,015| -0,015 | -0,015 |-0,015| -0,015 | 0,015 |0,015| 0,015 |-0,015
25 | -0,214 |-0,214| 0,214 | 0,214 |0,214| 0,214 | 0,214 |0,214| 0,214 |0,214
26 | 0,178 |0,178| 0,178 | 0,178 |0,178| 0,178 | 0,178 |0,178| 0,178 |0,178
27 |-0,095 |0,095| 0,095 | -0,095 |-0,095| -0,095 | -0,095 |0,095| 0,095 |0,095
28 | -0,084 |-0,084| 0,084 | 0,084 |0,084| 0,084 | 0,084 |0,084| 0,084 |-0,084

From table 11 it is possible to notice that some results do not have the same sign as the Base column (as tube
2 at Random column on table 11, for example). The explanation for that is as the results of the tests were
compared only for the third case results, the same mass balance equations used on Case 03 were used on the
tests. Within those equations, the initial estimated flow direction is already defined. To perform the test 12 flows
values were imposed on these equations and the other 16 values were calculated through then. As these 11
values are identical at each demanded average condition, to validate the mass balance equations some of the
remaining ones were required to invert their signal, it means, their flow direction was inverted to validate the mass
balance. Better explaining, at the initial estimate the mass balance from some tubes had their flow direction
different, comparing the initial estimate from the test and from the Base column. Observing table 11 is realizable
that the tests values and the “Base” values are, in modulus, the same. Some of them have contrary signals but it
is just because the initial estimate had a different direction; it means that in the end of the iterative processes they
have the same direction.

To sum up, the tests of initial flow estimate in relation of modulus value and flow direction are the same as the
“Base” column, demonstrating the Hardy Cross robustness.

The resulting flow on each tube had no difference greater than 0.2% if compared to the “Base” column, which
means that although the initial guesses were different from the average demand no influence on the results was
found, once that the mass balance is verified from the initial guess.
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The table 12 shows the number of iterations needed to obtain the converged result. It is clear that fewer
iterations were needed for the tubes that had the small head losses, followed by the tubes that were random
selected and at last the tubes that had the great head losses. Presenting the opposite idea of the hypothesis that
the great head losses tubes are would be the one with less iterations.

Tablel2. Iteration quantity for each average in each proposal. Source: authors

Small Head Losses | Great Head Losses Random Selection

Average Demands Average Demands Average Demands Base

50% | 100% | 150% | 50% | 100% | 150% | 50% | 100% | 150%
Iteration | 75 66 70 82 94 101 68 85 93 88

The Hardy Cross accuracy can be explained by the initial estimates that, judging by the precision and low
number of iterations, it can say they were very close to the maximum and minimum global values.

Conclusions

In the present work, a study of three of the most important nonlinear methods used for designing pipe networks
was carried out assessing the accuracy and robustness of these methods in calculating the main variables for
three different pipes networks.

By the results it could be seen, especially by the third case, that EPANET converged to different results
compared to the other methods. fsolve function presented the fastest convergence as expected. Hardy Cross
method obtained a great precision and it is robust enough to converge even when the initial estimates have great
differences among them, as in 50%, 100% and 150% of the average value of the tested demands. This results
allows the Cross method to be used in complex situation.

The hypothesis that the number of iterations would be small where the tubes with the greatest head losses
were chosen cannot be proven, as the smaller head losses had the short number of iterations, followed by the
random selection and then highest head losses.
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