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_________________________________________________________________________________________ 

Abstract 

Adequate knowledge of physical phenomena has been 
shown to be essential for the development of new 
technologies. Such knowledge allows several engineering 
problems to be studied and solutions to be found. More and 
more complex problems have been studied and solved, 
especially in recent centuries. Infinite and semi-infinite 
spaces presented great discretization difficulty due to the 
scarcity of resources for this. With the emergence of 
numerical methods, these problems had their closest 
possible solution to being found. The present work presents 
the formulation and mathematical principles that comprise 
the Boundary Element Method model to approach two-
dimensional problems with infinite and semi-infinite domains. 

The particulars regarding the definition of the relevant 
variables, the characteristics of the fundamental solutions in 
these cases, and the behavior of primal variables at infinitely 
distant points are discussed. Aspects related to the 
discretization and numerical issues are also addressed by 
solving two particular semi-plane problems. The numerical 
results obtained showed satisfactory accuracy, confirming 
that the Boundary Element Method is the most adequate 
technique even today to solve such problems.. 

Key words: Boundary Element Method; semi-Infinite 
domains; Method of Images. 

_________________________________________________________________________________________ 

Resumen 

Se ha demostrado que el conocimiento adecuado de los 
fenómenos físicos es esencial para el desarrollo de nuevas 
tecnologías. Este conocimiento permite estudiar varios 
problemas de ingeniería y encontrar soluciones. Se han 
estudiado y resuelto problemas cada vez más complejos, 
especialmente en los últimos siglos. Los espacios infinitos y 
semi-infinitos presentaron gran dificultad de discretización 
debido a la escasez de recursos para ello. Con la aparición 
de los métodos numéricos, estos problemas tuvieron su 
solución más cercana posible a ser encontrados. El presente 
trabajo presenta la formulación y los principios matemáticos 
que componen el modelo del Método del Elemento de límite 
para abordar problemas bidimensionales con dominios 
infinitos y semi-infinitos. Se discuten los detalles sobre la 

definición de las variables relevantes, las características de 
las soluciones fundamentales en estos casos y el 
comportamiento de las variables primarias en puntos 
infinitamente distantes. Los aspectos relacionados con la 
discretización y las cuestiones numéricas también se 
abordan mediante la resolución de dos problemas de 
semiplano particulares. Los resultados numéricos obtenidos 
mostraron una precisión satisfactoria, lo que confirma que el 
Método del Elemento de límite es la técnica más adecuada 
aún hoy para resolver este tipo de problemas. 

Palabras claves: Método de elemento de límite; dominios 
semi-infinitos; Método de imágenes..
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1. Introduction  

The main advantage of the Boundary Element Method (BEM) is that it requires discretization only at the limit 
[1]. Dimension of the input data is smaller and very easy to restructure, which makes it suitable for the problems 
of moving boundaries, fracture, contact, and stress or fluxes concentration. Due to its mathematical structure, its 
numerical performance has remarkable accuracy, both in calculating the basic variable and its derivative. Internal 
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values of these variables are still determinate with superior accuracy since the integral boundary equation is 
reused, and this equation is a new sentence of the weighted residual method [2].  

However, a special advantage of BEM consists of the treatment of so-called open or unbounded problems, that 
is, its domain is infinite or semi-infinite [3]. The discretization of problems of this nature through domain techniques 
is a difficult challenge because, without an adequate strategy, the traditional approach would generate a large 
number of equations, making the cost of its solution unfeasible. The BEM, on the other hand, mathematically 
eliminates the discretization of distant regions. However certain regularity conditions concerning the behavior of 
the functions in the boundary integral equation on a surface that is infinitely remote from the origin must be fulfilled 
[3]. 

Problems with infinite or semi-infinite domains are very important in engineering. Important applications can be 
mentioned in the analysis of fluid flow profiles in airfoils, in the definition of the thermal profile around fins, in the 
identification of the cathodic protection potential in submerged pipelines, and many important applications in the 
area of geotechnics, such as the identification of integrity of the excavated galleries for an underground mine. 
The Earth, for example, can be considered a semi-infinite medium in determining the temperature variation near 
its surface. Among many other examples, a thick wall can be modeled as a semi-infinite medium if all that matters 
is the temperature variation in the region close to one of the surfaces and the other surface is too far away to 
influence the region of interest during the observation time. Many applications referring to infinite domains can 
also be related to semi-infinite cases, such as cathodic protection of submerged structures, for example. In 
addition, considering the example cited, in which the Earth's surface constitutes a case of a semi-infinite medium, 
there are numerous and important situations where it is desired to make an interface relationship between a solid 
and a structure and also fluid and a structure. The BEM theory of semi-infinite means applies properly under these 
conditions, which include geophysics and seismic analysis. 

However, it should be noted that there is no abundant material on the theory relating to the application of BEM 
to these important problems. In the few bibliographic reference [5] the necessary methodological details are not 
presented, with the exception of the work by Brebbia, Telles and Wrobel [3], which refers to elasticity, theoretical 
and numerical characteristics related to the BEM approach to problems with open domain have not been reported. 
This just shows the importance this work has, as there are many peculiarities, especially in treating problems with 
semi-infinite regions. 

2. Methods 

Compared to other numerical methods based on the concept of discretization of the continuum, the Boundary 
Element Method (BEM) has great advantages; the most important of them is related to require the discretization 
only in on the boundary, figure 1: 

 
Fig. 1. Boundary discretization of a two-dimensional domain. Source: [1] 

 

2.1. The Regularity Condition 

The BEM integral equation for open stationary problems can be obtained by considering a surrounding circle 

of radius ρ centered on ξ, whose boundary is designated by Γ and is infinitely distant from the internal boundary 
Γo, as shown in Fig 2. In this deduction, only an internal boundary was taken; however, the region of interest may 
contain two or more cavities, whose equation follows the same shown for this simpler situation. 
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Fig. 2. Region delimited by the circle of radius ρ involving a cavity. Source: authors 

 
Initially, the integral equation in inverse form involves both the internal and the infinitely distant boundaries, as 

shown below, equation (1) 

C(ξ)u(ξ) + ∫ uq∗dГ0
Г0

− ∫ qu∗dГ0
Г0

= ∫ qu∗dГ∞
Г∞

− ∫ uq∗dГ∞
Г∞

  (1) 

 
In equation (1), u is the primal variable and q is its normal derivative; u * is the fundamental solution and q * its 

normal derivative. 

Equation (1) can be simplified if the source points are located exclusively in the region of interest and the 
following condition is met: 

 

lim
ρ→∞

∫ [qu∗ − uq∗]dГ∞
Г∞

= 0  (2) 

This is called the Regularity Condition, which can be obtained in cases where the Saint-Venant Principle [5] is 
characterized, which states that u and q take the same behavior as the fundamental solution u* and its normal 
derivative q* in regions sufficiently distant from the point of application of the source or the concentrated thermal 
loading. Thus, if the loading is applied to an area of interest, at a certain distance from this region, the behavior 
of the potential reproduces the behavior of the fundamental solution. 

In these conditions, for two-dimensional scalar field problems, it can be seen that equation (2) is satisfied, as 

the two parcels involved cancel each other out when ρ → ∞. The Regularity Condition is also obeyed, but in a 
different way, when the applied request is self-balanced. In this case, it can be seen that the decay of the potential 
is more accentuated so that the parts of equation (2) cancel each other out separately. A single case of 
disobedience to the condition of regularity arises when the conditions prescribed in domain Ω are such that they 
impose uniformity in potential across the whole domain. However, this is not a practical case. Similarly, as infinite 
domain problems, a semi-infinite problem consists of an idealized domain with a single flat surface that extends 
to infinity in all directions, as shown in figure 3. 

 
Fig. 3. Sketch of a semi-infinite region. Source: authors 

2.2. The Method of Images 

Although the theoretical basis is the same, based on the condition of regularity, in the past, the treatment of 
semi-infinite problems was much less efficient than in infinite cases since significant errors in the solution were 
introduced by the lack of an adequate fundamental solution. This was only minimized by the use of infinite 
boundary elements or that had special interpolation. The effective solution to this problem was made with an 
adjustment in the fundamental solution, made through the Method of Images [6]. 

The Method of Images (MIM) is a mathematical tool used to solve differential equations in which the domain of 
the basic variable is extended by adding its reflected image concerning a plane of symmetry. As a result, certain 
boundary conditions are automatically fulfilled, greatly facilitating the solution of the problem. The MIM is used in 
electrostatics to calculate the distribution of the electric field of a charge in the vicinity of a conductive surface and 
can also be used in magnetostatics to calculate the magnetic field of a magnet that is close to a superconducting 
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surface [7]. Its application also occurs in the study of the reflection or absorption of a contaminating plume of a 
so-called impenetrable outline without flow. Another application of great importance is linked to the study and 
containment of the propagation of sound outdoors, where acoustic barriers are modeled as bodies without 
thickness. In this case, their application in the context of the BEM reveals great adequacy and efficiency [8]. 

In the literature referring to BEM, the Method of Images was initially presented, addressing solutions to the 
problems of potential [6]. Subsequently, other scalar applications and in cases of elasticity were published [3]. 
There is a close relationship between the MIM and Green's Functions [9,10] so that the use of the MIM in 
combination with the BEM can be interpreted as a technique for adapting the classic fundamental solution, so 
that specific problems related to the semi-infinite regions can be solved.  This is because the fundamental solution 
for the semi-infinite medium can be found by adapting the classic solution for closed media so that the latter 
automatically satisfies the boundary condition at the interface. In this way, one can dispense with discretizing the 
semi-plane using the BEM.  

To obtain the fundamental solution adapted from the idea of the MIM, it is necessary to consider the 
mathematical steps that follow, which also list physical considerations about the problem. Initially consider a two-

dimensional space, figure 4, where is applied a source m with coordinates (ξ; a). It seeks to understand what 
happens at another point located symmetrically to x1 axis that is defined by the interface. This point, called the 
image source, is positioned exactly at a distance 2a from the original source. 

 
Fig. 4. Two symmetric sources in a semi-plane. Source: authors 

 
If the reflection condition at x2 = 0 is imposed, the mu* potential field produced by the source m applied in point 

(ξ; a) will be accompanied by a similar effect produced by the source image m' located in the reflected region. 
Naturally, the value of m' depends on the type of boundary condition imposed on the interface. The condition of 
reflection or physical symmetry of the potential is of the greatest interest, as this is much more useful for the 
practical applications of BEM. As the interface is defined along the x-axis and the direction of normal is in the 
same direction as y, this implies that, as a reflection boundary condition, one has, equation (3): 

∂u

∂n
=

∂u

∂x2
= 0  (3) 

Thus, the fundamental solution of the semi-plane results, equation (4): 

u∗ =
1

2π
ln[r1(x1; a)r2(x1; −a)]  (4) 

With the fundamental solution, it is necessary to derive it to obtain the potential derivative, hereinafter named 
as the fundamental flux. It is noticed that this is a simple operation, from which it follows equation (5): 

q∗ = −
1

2π

1

r1(x1; a)
−

1

2π

1

r2(x1; −a)
  (5) 

   
It should be noted that in equation (5) the values of r1 and r2 have their well-defined meaning. They are distances 

from the source and image source points to the field points. In cases where the interface is straight and there are 
no external sources, these expressions of the fundamental flux cancel each other out at the interface if the field 
points are located along with it, as shown in figure 5. It is noticed that, in this condition, the distances r1 and r2 are 
equal; but, because the points are situated symmetrically to the semi-plane, the expressions of q*, although they 
disappear, end up canceling each other due to the opposite sign of the normal being different in each case. Such 
a situation occurs in most applications in problems of electromagnetism, an area in which MIM is widely used. 
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Fig. 5. Field point located on the interface and symmetric sources located inside the semi plane. Source:authors 

 
The value of q* is also canceled if the source and field points are both on the interface, as shown in figure 6 

below: 

 
Fig. 6. Field point and source point both located on the interface. Source:authors 

Thus, the image source point and original source point have the same position; in this condition, the value of 
fundamental functions degenerate to the usual  Green’s BEM function; however, the MIM fundamental solution 
needs to be used to guarantee the suitability of the symmetry of semi plane model and eliminating the 
discretization of the boundary parts with prescribed Dirichlet condition. 

A different situation occurs if there is any irregularity in the semi-plane, figure 7, as in this case r1 is different 
from r2 and, consequently, q* does not cancel out in the curved boundary: 

 
Fig. 7. Field point and source point both located in the semi-plane. Source: authors 

 
The most common case in acoustics is when there is a sound source, the effects of which must be attenuated 

to avoid resonance and produce acoustic comfort. In this situation, figure 8, it is also necessary to introduce a 
concentrated source, a component that is relatively simple to introduce with the BEM. 
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Fig. 8. Usual configuration concerning acoustic source problem: field point and source point located out of the 

interface. Source:authors 
 

2.3. BEM Integral equation for semi-infinite media 

The integral equation of the BEM studied for the infinite medium remains in the essence for the mathematical 
model of semi-infinite cases, including the conditions of regularity, which are fulfilled. In other words, the 
fundamental solution to semi-space also guarantees that the behavior of infinitely distant variables can be 
neglected due to the decay of u* and q*. However, there are important aspects when obtaining the fundamental 
solution modified by the MIM. 

First, consider the semi-infinite medium, as shown in figure 9. In many cases, the region of interest is not the 
surface defined by the semi-plane but an internal region Γ´, as in the analysis of excavated galleries in a shallow 
depth mine. 

 
Fig. 9. Semi-infinite medium with the internal region. Source:authors 

Then, both the boundary interface and the internal boundaries can be loaded. The integral equation of the BEM 
in this case is equation (6): 

c(ξ)u(ξ) + ∫ q∗udГ
Г′

− ∫ u∗qdГ
Г

= 0   (6) 

Because q* is null in the flat interface, equation (7): 

∫ q∗udГ = 0 
Г̅

  (7) 

Thus, therefore, any Dirichlet conditions are not applicable in the interface, as previously highlighted. However, 
the most important aspect is that only the parts of the semi-plane boundary that are submitted to non-zero flux 
conditions need to be discretized since the fundamental solution is in charge of eliminating them from the model. 
The singularity in the arguments of the fundamental solution and its normal derivative in the event of a coincidence 
between the source and field points are also resolved in the same way as in the classical BEM for closed media 
since u* is a logarithmic singularity, which can be integrated in the usual sense. It is an improper integral, but as 
it has a weak singularity, it is integrable. The singularity in q * does not exist since the fundamental solution itself 
was generated based on the annulment of its derivative in the interface. Thus, the standard procedure of the BEM 
applies to these problems, that is, after the discretization, a classical matrix form is generated in case the field 
points are located in a curved part of the interface, equation (8): 

[H](U) = [G](Q)  (8) 

In equation (8), U and Q are potential and flow line matrices, containing known nodal values as well as values 
to be calculated. G and H are matrices from the weighting integrals for the potential and potential derivative, 
respectively [1]. The same happens if there are field and load points in any internal boundary, close to the 
interface. In this case, the number of source points must also be equal to the number of field points, as required 
usually with BEM. 
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In the case of applications with straight boundaries and loads only applied to this, aiming at the determination 
of potentials or fluxes outside the interface, the integrals containing q* cancel each other out - the matrix H 
disappears - and the system remains only in the equation (9): 

[I](U(ξ)) = [G](Q)  (9) 

In equation (9), I is the identity matrix. In this case, the coefficient c(ξ) that occurs on the diagonal of matrix H 
[3] is automatically determined by the fundamental solution, which would apparently degenerate to twice the value 

concerning the classical fundamental solution. However, this does not happen: one source point is inside (c(ξ) =
1) and the other outside the region (c(ξ) = 0) and equivalence with the usual value c(ξ) = 0,5 is obtained. 

It is noteworthy that obtaining potential values at the interface happens without the need to solve any system 
of equations, which is a huge computational advantage. Obviously, the same goes for calculating the values of 
the potential or flow, if desired, at points located within the semi-infinite domain. 

3. Results and Discussion 

3.1. Load concentrated on a straight surface 

In this first example, a constant flux is applied in a very small part of a straight interface, as shown in figure 10. 
It is emphasized that the boundary elements are constant and thus the applied load does not extend to 
neighboring elements, whose condition prescribed is flux null. The interest here is to reproduce the fundamental 
problem. It is possible to further reduce the interval, considering only one element, but from the presented way it 
will already be possible to see that the solution of this case in internal points is close to the behavior given by the 
fundamental solution, adjusted to a flow value that is not unitary, it is equal to 20. 

 
Fig. 10. Concentrated flux applied on a straight interface. Source:authors 

The temperature or the potential results in the boundary are shown in table 1. If the flux (or normal derivative 
of potential) were effectively singular, the value of temperature would be infinite. Initially, the strategy used here 
to assess the consistency of these results on the boundary is to calculate numerically the potential values at 
internal points - whose methodology is based on the Method of Images - and at some points slightly distant from 
the boundary, but which are equidistant from these. To better illustrate the exposed procedure, figure 11 shows 
a potential evenly distributed in a semicircle. 

Table 1. Temperature on the boundary, example 1. Source:authors 

x1 x2 Potential 

0,025000 0,000000 -0,475105 

0,075000 0,000000 -0,546209 

0,125000 0,000000 -0,626312 

0,175000 0,000000 -0,718046 

0,225000 0,000000 -0,825409 

0,275000 0,000000 -0,954936 

0,325000 0,000000 -1,118491 

0,375000 0,000000 -1,341674 

0,425000 0,000000 -1,704284 

0,475000 0,000000 -2,443571 
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Fig. 11. Equidistant values of the potential. Source:authors 

Table 2 presents the results of this comparison between values calculated internally and on the boundary. It 
can be seen that there is a very satisfactory agreement in the results. The greater error was observed only in the 
potential value referring to the last node, from which the discretization was truncated. It should also be considered 
that the values obtained internally are calculated through the reuse of the integral equation, which results in 
numerical values of greater precision compared to the values calculated on the boundary nodes [2,11]. 

Table 2. Potential in equidistant points. Source:authors 

x1 x2 Internal Potential Boundary Potential 

0.500 -0.175 -1.101152 -1.118491 

0.500 -0.375 -0.622539 -0.626312 

0.500 -0.500 -0.440214 -0.475105 

Table 3 compares the analytical values, based on the behavior of the fundamental solution and numerical 
values at internal points along the line x1 = 0,5. At these points, the so-called analytical values were calculated 
considering that, from a reasonable distance from the free surface, the vector radius r varies little, since the loaded 
sector is very restricted and integration errors are not very important. It is observed that, despite the restrictions 
mentioned for such a comparison, there is a very good agreement between the analytical and numerical results. 

Table 3. Analytical and numerical values of potential in internal points. Source:authors 

x1 x2 Internal potential 
Analytical 
potential 

0.50 -0.50 -0.440214 -0.441270 

0.50 -1.00 0.000265 0.000000 

0.50 -2.00 0.441338 0.441270 

0.50 -5.00 1.024611 1.024600 
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3.2. Potential uniformly distributed in a semicircle 

Numerically, this example is quite different from the previous one, since boundary conditions involving both 
potential and flow can be applied, because they are prescribed in a boundary that does not belong to the interface. 
Figure 12 illustrates the proposed problem: this is the case where a uniform and unitary temperature potential is 
applied along the semicircle with a radius equal to two. 

 
Fig. 12. Uniformly distributed potential in a semicircle. Source:authors 

When there are no fluxes applied to the interface and the region of interest is symmetrical, this problem is 
equivalent to the bottom (or top) of a problem with an infinite domain. In this case, there is a simple solution for 
comparison, which is based on the behavior of the fundamental solution. 

As mentioned, discretization is limited to the semicircular boundary. In this case, unlike the previous cases, 
both matrices H and G are generated. Figure 13 illustrates the discrete model adopted, in which image source 
points are positioned symmetrically to the usual BEM source points. 

 
Fig. 13. Semicircle discretization with field points and  

source points on the boundary. Source:authors 
The BEM matrix system to be solved equation 10: 
 

[G](Q) = [H](U̅) = (B)  (10) 

Thus, only flows are calculated on the boundary. It is noteworthy that the fundamental solution and its normal 
derivative, referring to the semi-plane, must be used in this case and in similar problems. Such fundamental 
solutions allow that it is not necessary to make any discretization along the interface, since the condition of 
symmetry is naturally incorporated into the problem. 

The analytical solution of the problem in an infinite medium with radius r = 2 and the use of the classic 
fundamental solution indicates a flux value on the boundary equal to 0,72135. The discrete model used here, with 
20 constant boundary elements, resulted in an average value equal to 0,713453, with a relative percentage error 
of approximately 1 %. Although very close, these numerical values can certainly be reduced by refining the mesh, 
thus eliminating errors in the representation of circular geometry and problems in the corners.  

For the internal points, the numerical values obtained at remote points are also satisfactory and are shown in 
table 4 below, accompanied by the analytical values. It is noteworthy, once again, that the results inside are more 
accurate than the boundary values. In numerical terms, it should be noted that due to the original source points 
being on the boundary, the diagonal coefficients of the matrix H referring to the integration based on these points 
is equal to 0.5, as the elements are constant. The coefficients generated by the image source points have c(ξ) 
equal to zero, as these points are physically in a void. 

In cases where the problem has a vertical symmetry, it can be seen that the H coefficients are practically null, 
when obtaining the values at points located on this vertical axis of symmetry. 

Table 4. Numerical values obtained at points away from the boundary. Source:authors 

x1 x2 Potential (BEM) Potential (analytical) 

0,00 -3,00 1,567359 1,583460 

0,00 -4,00 1,977610 1,997700 

0,00 -5,00 2,295847 2,319110 

0,00 -6,00 2,555877 2,582550 
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Still, in the context of this same example, a new arrangement of the source points is presented. Unlike what 
was done before, the original source points were placed at a distance from the central nodes, this distance is 
equivalent to the size of the element (0,5), where it was strategically selected so as not to produce appreciable 
errors of integration, see figure 14. In this condition, the coefficient c (ξ) is equal to zero. 

The numerical results were around 0,7242. Compared to previous results with the original source points 
coinciding with the nodal points, the results had slightly higher precision. 

 
Fig. 14. Source points located out of the boundary. Source:authors 

Conclusions 

Two typical problems were solved, in which the features of the BEM approach in semi-infinite were clearly 
presented. Despite the use of constant elements and not very refined meshes, numerical results obtained showed 
satisfactory accuracy, confirming that the BEM is the most adequate technique even today to solve such 
problems. 

The reference solutions were taken based on the behavior of the fundamental solution in infinite media. For 
more complex problems, especially when the domain geometry is irregular, it is difficult to find an affordable and 
reliable reference solution. However, in view of the good results obtained in the tests shown, it is expected that 
the method has satisfactory precision to solve these more challenging cases. 
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