Realización computacional en tres dimensiones del Método de los Elementos de Contorno en la teoría de la Elasticidad // Three dimension computational realization of the Method of the Contour elements in the Elasticity theory.
Abstract
En este trabajo se muestra la realización computacional en tres dimensiones del Método de los Elementos de Contorno en la
Teoría de la Elasticidad Lineal, para medio homogéneo e isotrópico considerando el efecto de las cargas másicas.
La realización computacional del método radica en discretizar el contorno mediante elementos en los que los
desplazamientos y las tracciones se suponen variando de acuerdo a funciones de interpolación. Aplicando el “método de
colocación” se obtiene un sistema de ecuaciones lineales que aporta la solución en el contorno, a partir de la cual se puede
obtener la solución en cualquier punto de la región de definición del problema.
En el presente trabajo se consideran elementos triangulares, se emplea interpolación lineal, se utiliza la transformación a
coordenadas homogéneas y se muestran los algoritmos que conducen al ensamblaje del sistema de ecuaciones que aporta la
solución en el contorno.
Palabras claves: Elementos de Contorno(MEC, BEM), realización computacional, elementos triangulares.
______________________________________________________________________________
Abstract
In this work is shown the computational formulation in three dimensions of the Boundary Element Method in 3D Elastostatic
for isotropic, homogeneous and linear material considering the effect of body forces.
The computational formulation of the method is based on the discretization of the boundary into elements over which
displacements and tractions are expressed in terms of interpolation functions. Applying the collocation method a system of
lineal equations is obtained that brings the solution on the boundary, from which the solution in any point of the definition
region of the problem can be obtained.
In the present work triangular elements are considered, lineal interpolation is employed, the transformation to homogeneal
coordinates is used and it is shown the algorithms that guide to the assembling of the equations system that contributes to the
solution on the boundary.
Key words: Contour element, computional realization, Triangular elements.
Downloads
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).