Sistema de servocontrol visual empleando redes neuronales y filtros en el dominio de CIELAB//Visual servo-control system using neural networks and filters based on CIELAB
Abstract
En este trabajo se presentan los resultados de un sistema servocontrol visual de un brazo robótico de seis grados de libertad. Para esto, se utiliza una red neuronal de tipo feed forward, entrenada por back propagation, para determinar la distancia entre el brazo robótico y un objeto de referencia, que permite ubicarlo en un espacio de trabajo. Las entradas de la red corresponden a la información obtenida de las imágenes capturadas por el Kinect, utilizando un filtro que discrimina la posición de los elementos, en el espacio de color CIELAB (Commission Internationale de l'Eclairage L*a*b components). El resultado de esta investigación demostró que la distancia estimada por la red tiene un margen de error menor, que el algoritmo propuesto en otros trabajos. Igualmente, se probó que el sistema de procesamiento de imágenes es más robusto a ruidos digitales, en comparación con los sistemas que utilizan filtros en el dominio RGB (Red-Green-Blue).Palabras claves: sistema de servocontrol visual, CIELAB, redes neuronales, filtrado de imágenes.
______________________________________________________________________________
Abstract
In this paper the results of visual servo-control system for a robotic arm with six degrees of freedom are presented. For this purpose, a feed fordward neural network, which was trained by back propagation, is used to determine the distance between the robot arm and a reference object and sitting the robot in the workspace. The inputs of neural network correspond to the information obtained from the images captured by the Kinect, using a filter that discriminates the position of the elements in the CIELAB (Commission Internationale de l'Eclairage L*a*bcomponents) color space. The result of this research showed that the estimated distance with the network has an errorless than the algorithm proposed in other works. Similarly, it was proved that the image processing system is more robust to digital noise, compared to systems using filters in RGB (Red-Green-Blue).
Key words: visual servo-control system, CIELAB, neural networks, image filtering
Downloads
How to Cite
1.
Buitrago Salazar G, Ramos Sandoval O. Sistema de servocontrol visual empleando redes neuronales y filtros en el dominio de CIELAB//Visual servo-control system using neural networks and filters based on CIELAB. Ing. Mec. [Internet]. 2015 May 1 [cited 2025 Sep. 13];18(2):100-8. Available from: https://ingenieriamecanica.cujae.edu.cu/index.php/revistaim/article/view/514
Issue
Section
Original article
License
Authors who publish with this journal agree to the following terms:a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).