Ajuste posinomial combinando Enjambre de Partículas y Métodos de Programación No-lineal//Posynomial fitting combiding Particle Swarm and Nonlinear Programming Methods
Abstract
El desempeño de los métodos determinísticos de programación no-lineal es altamente sensible de la selección de la aproximación inicial, en particular cuando se trata de la obtención de un óptimo global, como es requerido en el ajuste posinomial. El presente trabajo tuvo como objetivo, generar la aproximación inicial a través de la metaheurística enjambre de partículas, para mejorar el desempeño de los métodos de programación no-lineal en el ajuste posinomial. A partir de pruebas no paramétricas que se realizaron para la comparación de los resultados obtenidos en los problemas considerados, se observó que las diferencias existentes entre los resultados del ajuste posinomial, con y sin la aplicación de la propuesta de mejora, son significativas. Además, se constató que la metodología de mejora desarrollada permite obtener un buen desempeño de los métodos de programación no-lineal en el ajuste posinomial, lo que redunda en la obtención de modelos posinomiales de calidad.
Palabras claves: ajuste posinomial, programación no-lineal, optimización por enjambre de partículas, programación geométrica.
______________________________________________________________
Abstract
The performance of deterministic methods of nonlinear programming is highly sensitive to the selection of the initial approximation, particularly when it comes to obtaining an overall optimum, as required in the posyinomial fitting. The present work aimed to generate the initial approximation through of particle swarm metaheuristic, to improve the performance of non-linear programming methods in posyinomial fitting. From the non-parametric tests performed for the comparison of the results obtained in the considered problems, it was observed that the differences between the results of the posyinomial fitting, with and without the application of the improvement proposal, are significant. In addition, it was found that the improvement methodology developed allows to obtain a good performance of the non-linear programming methods in the posynomial fitting, which results in the obtaining of quality posynomial models.
Key words: posynomial fitting, nonlinear programming, particle swam optimization, geometric programming.Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).