Solving potential problems in two dimensions in semi-infinite media using the Boundary Element Method // Resolver problemas potenciales en dos dimensiones en medios semi-infinitos usando el Método de Elemento de Límite
Abstract
Se ha demostrado que el conocimiento adecuado de los fenómenos físicos es esencial para el desarrollo de nuevas tecnologías. Este conocimiento permite estudiar varios problemas de ingeniería y encontrar soluciones. Se han estudiado y resuelto problemas cada vez más complejos, especialmente en los últimos siglos. Los espacios infinitos y semi-infinitos presentaron gran dificultad de discretización debido a la escasez de recursos para ello. Con la aparición de los métodos numéricos, estos problemas tuvieron su solución más cercana posible a ser encontrados. El presente trabajo presenta la formulación y los principios matemáticos que componen el modelo del Método del Elemento de límite para abordar problemas bidimensionales con dominios infinitos y semi-infinitos. Se discuten los detalles sobre la definición de las variables relevantes, las características de las soluciones fundamentales en estos casos y el comportamiento de las variables primarias en puntos infinitamente distantes. Los aspectos relacionados con la discretización y las cuestiones numéricas también se abordan mediante la resolución de dos problemas de semiplano particulares. Los resultados numéricos obtenidos mostraron una precisión satisfactoria, lo que confirma que el Método del Elemento de límite es la técnica más adecuada aún hoy para resolver este tipo de problemas.
Palabras claves: Método de elemento de límite; dominios semi-infinitos; Método de imágenes.
Abstract
Adequate knowledge of physical phenomena has been shown to be essential for the development of new technologies. Such knowledge allows several engineering problems to be studied and solutions to be found. More and more complex problems have been studied and solved, especially in recent centuries. Infinite and semi-infinite spaces presented great discretization difficulty due to the scarcity of resources for this. With the emergence of numerical methods, these problems had their closest possible solution to being found. The present work presents the formulation and mathematical principles that comprise the Boundary Element Method model to approach two-dimensional problems with infinite and semi-infinite domains. The particulars regarding the definition of the relevant variables, the characteristics of the fundamental solutions in these cases, and the behavior of primal variables at infinitely distant points are discussed. Aspects related to the discretization and numerical issues are also addressed by solving two particular semi-plane problems. The numerical results obtained showed satisfactory accuracy, confirming that the Boundary Element Method is the most adequate technique even today to solve such problems..
Key words: Boundary Element Method; semi-Infinite domains; Method of Images.
Downloads
Published
Versions
- 2022-12-08 (2)
- 2022-09-01 (1)
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).