Modelación empírica de propiedades termofísicas de aceros inoxidables austeníticos // Empirical modelation of thermophysical properties of austenitic stainless steel
Abstract
Las propiedades termofísicas de los aceros son de especial interés en las aplicaciones de la ingeniería térmica. El objetivo de esta investigación es la obtención de un método que permita predecir la influencia de la composición y temperatura de operación sobre las propiedades termofísicas en los aceros inoxidables austeníticos. Mediante el método Flash Laser se obtuvieron 3255 muestras experimentales de aceros AISI laminados y recocidos 301, 302, 304, 310 y 316, que resumen la variación de la conductividad térmica, calor específico, difusividad y densidad, para composiciones conocidas (en por ciento másico) de C, Mn, P, S, Si, Ni, Cr, Mo, V, en un rango de temperaturas de 0 a 800 ºC. Los datos experimentales disponibles fueron procesados mediante técnicas machine learning, desarrollando un modelo que permite computar las propiedades termofísicas objeto de estudio con un error de correlación inferior al 25 % en el 90 % los datos experimentales disponibles. En todos los casos, el modelo obtenido muestra valores adecuados de ajustes y correlación, por lo que puede ser considerado satisfactorio para el diseño práctico.
Palabras claves: acero inoxidable austenítico; modelos empíricos; machine learnig.
Abstract
The prediction of steel thermophysical properties are special interest for thermal engineering applications. This work aims to obtaining a method for predicting the temperature influence and composition on the variation on the austenitic stainless steels thermophysical properties. Applying the Flash Laser method, 3 255 experimental samples for rolled and annealed AISI steels (301, 302, 304, 310 and 316) was obtained, which summarize the variation of thermal conductivity, specific heat, diffusivity and density, for known compositions (in mass percent) of C, Mn, P, S, Si, Ni, Cr, Mo, V, in a temperature range from 0 to 800 ?. By means machine learning techniques, the available experimental data were generalized, developing a correlation that fits the experiments validity range, with a deviation of 25% for the 90% of the available experimental data. In all cases, the agreement for the proposed model is good enough to be considered satisfactory for practical design.
Key words: austenitic stainless steel; empirical models; machine learning.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).