Aplicación del análisis de componentes principales al comportamiento mecánico de turbinas de 100 MW // Application the principal component analysis to the mechanical behavior of turbines of 100 MW
Abstract
Este trabajo tuvo como objetivo el diseño de un modelo estadístico basado en la técnica de Análisis de Componentes Principales (ACP) (Principal Component Analysis - PCA) como método para la reducción de dimensionalidad y como vía para identificar los parámetros que mayor influencia tienen en la variabilidad del comportamiento mecánico dinámico funcional de las turbinas a vapor de 100 MW de potencia de generación eléctrica. Se presentan los parámetros síntomas medibles que caracterizan el comportamiento mecánico dinámico funcional de la turbina y un modelo grupal por subconjunto mecánico para el análisis integrado de parámetros síntomas de la turbina, en el cuál será aplicado el modelo ACP. Se emplearon métodos como la modelación matemática y estadística a partir de un modelo estadístico basado en la técnica de análisis de componentes principales. Se obtuvo como resultado la reducción dimensional del problema original a partir de la obtención de las componentes principales y la determinación de los parámetros síntomas con mayor influencia en la variabilidad del proceso.
Palabras clave: análisis de componentes principales; reducción de dimensionalidad; turbinas a vapor; condición de la turbina; parámetro síntoma.
Abstract
This work aimed at the design of a statistical model based in the technique of principal component analysis (PCA) like method for the reduction of dimensionality and like road to identify the parameter that they have bigger influence in electric generation's variability of the mechanical dynamic functional behavior of 100 MW's steam turbines of potency. Measurable symptoms present the parameters themselves that the mechanical expeditious functional behavior of the turbine and a group model for mechanical subset for the analysis integrated of parameters characterize symptoms of the turbine, in the which one will be applied the model ACP. Methods were used as the mathematical and statistical modelation as from a statistical model based in the technique of principal component analysis. Obtained him as a result the dimensional reduction of the original problem as from the obtaining of the component main and the determination of the parameter symptoms with bigger influence in the variability of the process.
Key words: principal component analysis; reduction of dimensionality; steam turbines. condition of the turbine; parameter symptom.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).