Data-Driven Multivariate Model for condition monitoring of 100 MW Steam Turbines

Authors

  • Francisco A. de la Torre Silva Universidad Tecnológica de la Habana José Antonio Echeverría CUJAE. Centro de Estudios en Ingeniería de Mantenimiento, CEIM. La Habana, Cuba.
  • Evelio Palomino Marín Universidad Tecnológica de la Habana José Antonio Echeverría CUJAE. Centro de Estudios en Ingeniería de Mantenimiento, CEIM. La Habana, Cuba.
  • Armando Díaz Concepción Universidad Tecnológica de la Habana José Antonio Echeverría CUJAE. Centro de Estudios en Ingeniería de Mantenimiento, CEIM. La Habana, Cuba.
  • Alejandra García Toll Universidad Tecnológica de la Habana José Antonio Echeverría CUJAE. Centro de Estudios en Ingeniería de Mantenimiento, CEIM. La Habana, Cuba.
  • Alexander Alfonso Álvarez Universidad de La Serena. Facultad de Ingeniería, Departamento de Ingeniería Mecánica. La Serena, Chile.

Keywords:

data-driven diagnostics, multivariate modeling, principal component analysis, predictive maintenance, 100 MW steam turbines

Abstract

A data-driven diagnostic model was developed for 100 MW steam turbines, integrating Principal Component Analysis (PCA) and Multivariate Statistical Process Control (MSPC) to characterize the normal functional-dynamic variability of the system and to detect early operational deviations. Historical databases from the online monitoring system, containing vibration and technological measurements acquired over more than two years of continuous operation, were used. The methodological process included data preprocessing, conditioning, cleaning, and validation, followed by the construction of the multivariate model and the definition of a reference pattern sample. Results demonstrated the statistical stability of the model and its ability to discriminate abnormal conditions using Hotelling’s T² and Q-residuals statistics. The proposed approach improved early fault detection and contributed to the implementation of condition-based predictive maintenance strategies, providing an effective tool for functional diagnostics of high-power industrial turbines and establishing a methodological framework that can be extended to other rotating thermal systems.

Published

2025-07-30

How to Cite

1.
de la Torre Silva FA, Palomino Marín E, Díaz Concepción A, García Toll A, Alfonso Álvarez A. Data-Driven Multivariate Model for condition monitoring of 100 MW Steam Turbines. Ing. Mec. [Internet]. 2025 Jul. 30 [cited 2025 Oct. 15];28:e711. Available from: https://ingenieriamecanica.cujae.edu.cu/index.php/revistaim/article/view/816

Issue

Section

Original article

Most read articles by the same author(s)

> >>